Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2306967120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722060

RESUMO

Many plant species in historically fire-dependent ecosystems exhibit fire-stimulated flowering. While greater reproductive effort after fire is expected to result in increased reproductive outcomes, seed production often depends on pollination, the spatial distribution of prospective mates, and the timing of their reproductive activity. Fire-stimulated flowering may thus have limited fitness benefits in small, isolated populations where mating opportunities are restricted and pollination rates are low. We conducted a 6-y study of 6,357 Echinacea angustifolia (Asteraceae) individuals across 35 remnant prairies in Minnesota (USA) to experimentally evaluate how fire effects on multiple components of reproduction vary with population size in a common species. Fire increased annual reproductive effort across populations, doubling the proportion of plants in flower and increasing the number of flower heads 65% per plant. In contrast, fire's influence on reproductive outcomes differed between large and small populations, reflecting the density-dependent effects of fire on spatiotemporal mating potential and pollination. In populations with fewer than 20 individuals, fire did not consistently increase pollination or annual seed production. Above this threshold, fire increased mating potential, leading to a 24% increase in seed set and a 71% increase in annual seed production. Our findings suggest that density-dependent effects of fire on pollination largely determine plant reproductive outcomes and could influence population dynamics across fire-dependent systems. Failure to account for the density-dependent effects of fire on seed production may lead us to overestimate the beneficial effects of fire on plant demography and the capacity of fire to maintain plant diversity, especially in fragmented habitats.


Assuntos
Ecossistema , Aptidão Genética , Humanos , Reprodução , Polinização , Sementes
2.
Am J Bot ; 109(11): 1861-1874, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112607

RESUMO

PREMISE: Reproductive fitness of individual plants depends on the timing of flowering, especially in mate-limited populations, such as those in fragmented habitats. When flowering time traits are associated with differential reproductive success, the narrow-sense heritability (h2 ) of traits will determine how rapidly trait means evolve in response to selection. Heritability of flowering time is documented in many annual plants. However, estimating h2 of flowering time in perennials presents additional methodological challenges, often including paternity assignment and trait expression over multiple years. METHODS: We evaluated the h2 of onset and duration of flowering using offspring-midparent regressions and restricted maximum likelihood methods in an experimental population of an iterocarpic, perennial, herbaceous plant, Echinacea angustifolia, growing in natural conditions. We assessed the flowering time of the parental cohort in 2005 and 2006; the offspring in 2014 through 2017. We also examined the effects of the paternity assignment from Cervus and MasterBayes on estimates of h2 . RESULTS: We found substantial h2 for onset and duration of flowering. We also observed variation in estimates among years. The most reliable estimates for both traits fell in the range of 0.1-0.17. We found evidence of a genotype by year interaction for onset of flowering and strong evidence that genotypes are consistent in their duration of flowering across years. CONCLUSIONS: Substantial heritabilities in this population imply the capacity for a response to natural selection, while also suggesting the potential for differential contributions to adaptive evolution among seasons.


Assuntos
Flores , Reprodução , Flores/genética , Reprodução/genética , Fenótipo , Variação Genética , Plantas
3.
Am Nat ; 192(3): 379-388, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125234

RESUMO

The timing and synchrony of mating activity in a population may vary both within and among years. With the exception of masting species, in which reproductive activity fluctuates dramatically among years, mating synchrony is typically studied within years. However, opportunities to mate also vary among years in nonmasting iteroparous species. We demonstrate that studying only within-year flowering synchrony fails to accurately quantify variation in mating opportunity in an experimental population ([Formula: see text]) of a nonmasting species, Echinacea angustifolia. We quantified individuals' synchrony of flowering within and among years and partitioned the contribution of each measure to mean daily mating potential, the number of potential mates per individual per day, averaged over every day that it flowered during the 11-year study period. Individual within- and among-year synchrony displayed wide variation and were weakly correlated. In particular, among-year synchrony explained 39% more variation in mean daily mating potential than did within-year synchrony. Among-year synchrony could have underappreciated significance for mating dynamics in nonmasting species.


Assuntos
Echinacea/fisiologia , Flores/fisiologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...